57 正弦定理 ● 余弦定理① 制限時間 開始時間 終了時間 合格点 80点

 $\sin \theta$ を正弦(せいげん)、 $\cos \theta$ を余弦(よげん)、 $\tan \theta$ を正接(せいせつ)といいます。

正弦定理… \triangle ABC の \angle A の対辺をa、 \triangle ABC の外接円の半径をR とすると、a=2RsinA になる。

 $\sin 30^{\circ} = \sin 150^{\circ} = \frac{1}{2}$ $\sin 45^{\circ} = \sin 135^{\circ} = \frac{1}{\sqrt{2}}$ $\sin 60^{\circ} = \sin 120^{\circ} = \frac{\sqrt{3}}{2}$

\triangle ABC について、 \angle A の対辺 a の長さを求めましょう。(4 点×11 問=44 点)

例	∠A=30°, R=3	1	∠A=30°, R=5	2	∠A=150°, R=6	3	∠A=150°、R=2
	$a=2\times3\times\frac{1}{2}$						
	a=3						
4	∠A=45°, R=4	⑤	∠A=45°, R=8	6	∠A=135°, R=7	7	∠A=135°、R=1
8	∠A=60°, R=9	9	∠A=60°, R=6	10	∠A=120°, R=1	11)	∠A=120°、R=5

正弦定理 a=2RsinA の両辺を sinA でわると、 $\frac{a}{\sin A}$ =2R になります。

△ABC の外接円の半径 R を求めましょう。(4 点×11 問=44 点)

			i		i		
例	∠A=30°, a =3	1	∠A=30°, a =6	2	∠A=150°, a =2	3	∠A=150°, a =1
	$2R = 3 \div \frac{1}{2} = 6$						
	R=6÷2=3						
4	∠A=45°, <i>a</i> =5	⑤	∠A=45°, <i>a</i> =7	6	∠A=135°, <i>a</i> =4	7	∠A=135°, <i>a</i> =1
8	∠A=60°, <i>a</i> =8	9	∠A=60 $^{\circ}$, a =1	10	∠A=120°, a =9	11)	∠A=120°, a =6

()に合う語句を書きましょう。(3 点×4 問=12 点)

1	sinθを()、	2	sin45°=sin135°	3	正弦定理		4	正弦定理の変形	,
	cos $ heta$ を余弦、		=()		a=1	`		0D —/	`
	tan θ を正接という 。				a=0	,		2R=()

正弦定理 a=2RsinA の両辺を 2R でわると、 $\frac{a}{2R}$ =sinA になります。

△ABC について、∠A の大きさを求めましょう。(4 点×11 問=44 点)

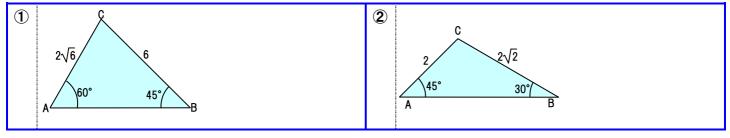
例	$a=2\sqrt{3}$, R=2	① $a=5\sqrt{3}$, R=5	② $a=\sqrt{3}$, R=1	3 $a=4\sqrt{3}$, R=4
	$\sin A = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2}$			
	∠A=60°、120°			
4	<i>a</i> =7, R=7	⑤ a=3、R=3	⑥ a=6、R=6	② a=1、R=1
8	$a=8\sqrt{2}$, R=8	9 $a=4\sqrt{2}$, R=4	① $a=\sqrt{2}$, R=1	① $a=9\sqrt{2}$, R=9
	·	·	·	·

正弦定理はどの辺にも当てはまるので、 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ が成り立ちます。

\triangle ABC について、 \angle B の対辺 b の長さを求めましょう。(8 点×5 問=40 点)

	-		100
例	\angle A=30 $^{\circ}$ 、 \angle B=45 $^{\circ}$ 、 a =5 のときの b の長さ	1	∠A=30°、∠B=135°、 <i>a</i> =3 のときの <i>b</i> の長さ
	$\frac{5}{\sin 30^{\circ}} = \frac{b}{\sin 45^{\circ}} \rightarrow 5\sin 45^{\circ} = b\sin 30^{\circ}$		
	$5 \times \frac{1}{\sqrt{2}} = \frac{1}{2}b \qquad b = 5\sqrt{2}$		
2	$\angle A=45^{\circ}$ 、 $\angle B=30^{\circ}$ 、 $a=7$ のときの b の長さ	3	$\angle A$ =45 $^{\circ}$ 、 $\angle B$ =120 $^{\circ}$ 、 a =4 のときの b の長さ
4	$\angle A = 60^\circ$ 、 $\angle B = 30^\circ$ 、 $a = 2$ のときの b の長さ	⑤	$\angle A=60^{\circ}$ 、 $\angle B=45^{\circ}$ 、 $a=6$ のときの b の長さ

\triangle ABC について、 \angle C の対辺 c の長さを求めましょう。(8 点×2 問=16 点)



59 正弦定理・余弦定理③

制限時間

開始時間 ■時■<u>分</u> 終了時間 ■時■分 合格点 80 点

余弦定理… $a^2=b^2+c^2-2bc\cos A$ 、 $b^2=c^2+a^2-2ca\cos B$ 、 $c^2=a^2+b^2-2ab\cos C$

$$\cos 30^{\circ} = \frac{\sqrt{3}}{2} \quad \cos 45^{\circ} = \frac{1}{\sqrt{2}} \quad \cos 60^{\circ} = \frac{1}{2} \quad \cos 120^{\circ} = -\frac{1}{2} \quad \cos 135^{\circ} = -\frac{1}{\sqrt{2}} \quad \cos 150^{\circ} = -\frac{\sqrt{3}}{2}$$

 \triangle ABC について、次の辺の長さを求めましょう。(10 点 \times 5 問=50 点)

例	$\angle A=45^{\circ}$ 、 $b=5\sqrt{2}$ 、 $c=8$ のときの a $a^2=(5\sqrt{2})^2+8^2-2\times5\sqrt{2}\times8\times\cos45^{\circ}$ $a^2=50+64-80\sqrt{2}\times\frac{1}{\sqrt{2}}=114-80=34$ $a=\sqrt{34}$	1	∠A=120°、b=3、c=5のときの a
2	∠B=30 $^\circ$ 、 a =2 $\sqrt{3}$ 、 c =6のときの b	3	∠B=135 $^\circ$ 、 a =4、 c =3 $\sqrt{2}$ のときの b
4	∠C=60°、 <i>a</i> =3、 <i>b</i> =5 のときの <i>c</i>	5	∠C=150°、a=4√3、b=4のときの c

余弦定理を変形すると、次の関係式が成り立ちます。

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
, $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$, $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

 \triangle ABC について、次の角の大きさを求めましょう。(10 点 \times 5 問=50 点)

例	$a=\sqrt{34}$ 、 $b=5\sqrt{2}$ 、 $c=8$ のときの \angle A $\cos A = \frac{50+64-34}{2\times5\sqrt{2}\times8} = \frac{80}{80\sqrt{2}} = \frac{1}{\sqrt{2}}$ よって \angle A=45 $^{\circ}$	1	$a=\sqrt{5}$ 、 $b=\sqrt{2}$ 、 $c=1$ のときの \angle A
2	a=5、b=7、c=8のときの∠B	3	a=10、b=14、c=6のときの∠B
4	a =4、 b =5 $\sqrt{3}$ 、 c = $\sqrt{31}$ のときの \angle 0	5	a =4 $\sqrt{3}$ 、 b =4、 c =4 $\sqrt{7}$ のときの \angle C

60 正弦定理・余弦定理4

制限時間 30分

開始時間
■時■分

終了時間 ■時■分 合格点 80 点

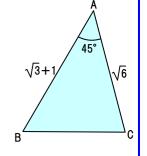
正弦定理と余弦定理を利用すると、2辺とその間の角から、残りの辺や角を求めることが出来ます。

正弦定理···a=2RsinA

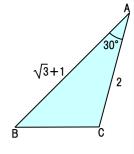
余弦定理 $\cdots a^2 = b^2 + c^2 - 2bc\cos A$ 、 $b^2 = c^2 + a^2 - 2ca\cos B$ 、 $c^2 = a^2 + b^2 - 2ab\cos C$

△ABC について、残りの辺の長さや角の大きさを求めましょう。(20 点×3 問=60 点)

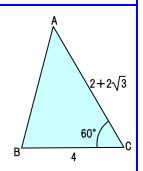
① $\angle A=45^{\circ}$ 、 $b=\sqrt{6}$ 、 $c=\sqrt{3}+1$ のとき



② $\angle A=30^{\circ}$ 、b=2、 $c=\sqrt{3}+1$ のとき

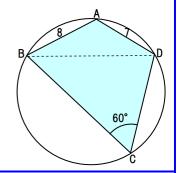


③ $\angle C=60^{\circ}$ 、a=4、 $b=2+2\sqrt{3}$ のとき

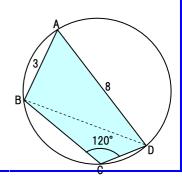


円に内接する四角形 ABCD について、BD と半径 R の長さを求めましょう。(20 点×2 問=40 点)

① ∠C=60°、AB=8、AD=7のとき



② ∠C=120°、AB=3、AD=8のとき



 $\sin \theta$ を正弦(せいげん)、 $\cos \theta$ を余弦(よげん)、 $\tan \theta$ を正接(せいせつ)といいます。

正弦定理… \triangle ABC の \angle A の対辺をa、 \triangle ABC の外接円の半径をR とすると、a=2RsinA になる。

$$\sin 30^{\circ} = \sin 150^{\circ} = \frac{1}{2}$$
 $\sin 45^{\circ} = \sin 135^{\circ} = \frac{1}{\sqrt{2}}$ $\sin 60^{\circ} = \sin 120^{\circ} = \frac{\sqrt{3}}{2}$

\triangle ABC について、 \angle A の対辺 a の長さを求めましょう。(4 点×11 問=44 点)

例	∠A=30°, R=3	1	∠A=30°, R=5	2	∠A=150°、R=6	3	∠A=150°、R=2
	$a=2\times3\times\frac{1}{2}$		$a=2\times5\times\frac{1}{2}$		$a=2\times6\times\frac{1}{2}$		$a=2\times2\times\frac{1}{2}$
	<i>a</i> =3		<i>a</i> =5		<i>a</i> =6		a=2
4	∠A=45°, R=4	⑤	∠A=45°, R=8	6	∠A=135°, R=7	7	∠A=135°, R=1
	$a=2\times4\times\frac{1}{\sqrt{2}}$		$a=2\times8\times\frac{1}{\sqrt{2}}$		$a=2\times7\times\frac{1}{\sqrt{2}}$		$a=2\times1\times\frac{1}{\sqrt{2}}$
	$a=4\sqrt{2}$		$a=8\sqrt{2}$		$a=7\sqrt{2}$		$a=\sqrt{2}$
8	∠A=60°, R=9	9	∠A=60°, R=6	10	∠A=120°, R=1	11)	∠A=120°、R=5
	$a=2\times9\times\frac{\sqrt{3}}{2}$		$a=2\times6\times\frac{\sqrt{3}}{2}$		$a=2\times1\times\frac{\sqrt{3}}{2}$		$a=2\times5\times\frac{\sqrt{3}}{2}$
	$a=9\sqrt{3}$		$a=6\sqrt{3}$		$a=\sqrt{3}$		$a=5\sqrt{3}$

正弦定理 a=2RsinA の両辺を sinA でわると、 $\frac{a}{\sin A}$ =2R になります。

△ABC の外接円の半径 R を求めましょう。(4 点×11 問=44 点)

			TO TO THE TE	11.5	4117		
例	∠A=30°, a =3	1	∠A=30°, a =6	2	∠A=150°, a =2	3	$\angle A = 150^{\circ}, a = 1$
	$2R = 3 \div \frac{1}{2} = 6$		$2R = 6 \div \frac{1}{2} = 12$		$2R = 2 \div \frac{1}{2} = 4$		$2R=1\div\frac{1}{2}=2$
	R=6÷2=3		R=12÷2=6		R=4÷2=2		R=2÷2=1
4	∠A=45°, <i>a</i> =5	5	∠A=45°, <i>a</i> =7	6	∠A=135°, <i>a</i> =4	7	∠A=135°, <i>a</i> =1
	$2R = 5 \div \frac{1}{\sqrt{2}} = 5\sqrt{2}$		$2R = 7 \div \frac{1}{\sqrt{2}} = 7\sqrt{2}$		$2R = 4 \div \frac{1}{\sqrt{2}} = 4\sqrt{2}$		$2R = 1 \div \frac{1}{\sqrt{2}} = \sqrt{2}$
	$R=5\sqrt{2} \div 2 = \frac{5\sqrt{2}}{2}$		$R = 7\sqrt{2} \div 2 = \frac{7\sqrt{2}}{2}$		$R=4\sqrt{2} \div 2=2\sqrt{2}$		$R = \sqrt{2} \div 2 = \frac{\sqrt{2}}{2}$
8	∠A=60°, <i>a</i> =8	9	∠A=60°, <i>a</i> =1	10	∠A=120°, <i>a</i> =9	11)	∠A=120°, <i>a</i> =6
	$2R = 8 \div \frac{\sqrt{3}}{2} = \frac{16}{\sqrt{3}}$		$2R=1 \div \frac{\sqrt{3}}{2} = \frac{2}{\sqrt{3}}$		$2R = 9 \div \frac{\sqrt{3}}{2} = \frac{18}{\sqrt{3}}$		$2R = 6 \div \frac{\sqrt{3}}{2} = \frac{12}{\sqrt{3}}$
	$R = \frac{16}{\sqrt{3}} \div 2 = \frac{8}{\sqrt{3}}$		$R = \frac{2}{\sqrt{3}} \div 2 = \frac{1}{\sqrt{3}}$		$R = \frac{18}{\sqrt{3}} \div 2 = \frac{9}{\sqrt{3}} = 3\sqrt{3}$		$R = \frac{12}{\sqrt{3}} \div 2 = \frac{6}{\sqrt{3}} = 2\sqrt{3}$

)に合う語句を書きましょう。(3 点×4 問=12 点)

① $\sin \theta$	を(正弦), (2 sin45°=sin135°	3	正弦定理	4	正弦定理の変形
	を余弦、 を正接とし	いう。	$=(\frac{1}{\sqrt{2}})$		a=(2RsinA)		$2R = (\frac{a}{\sin A})$

開始時間 終了時間 合格点 ■時■分 ■時■分 80 点

正弦定理 a=2RsinA の両辺を 2R でわると、 $\frac{a}{2R}=sinA$ になります。

△ABC について、∠A の大きさを求めましょう。(4 点×11 問=44 点)

例	$a=2\sqrt{3}$, R=2	1	$a=5\sqrt{3}$, R=5	2	$a = \sqrt{3}$, R=1	3	$a=4\sqrt{3}$, R=4
	$\sin A = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2}$		$\sin A = \frac{5\sqrt{3}}{10} = \frac{\sqrt{3}}{2}$		$sinA = \frac{\sqrt{3}}{2}$		$\sin A = \frac{4\sqrt{3}}{8} = \frac{\sqrt{3}}{2}$
	∠A=60°, 120°		∠A=60°、120°		∠A=60°、120°		∠A=60°、120°
4	<i>a</i> =7, R=7	⑤	a=3, R=3	6	<i>a</i> =6, R=6	7	a=1, R=1
	$\sin A = \frac{7}{14} = \frac{1}{2}$		$\sin A = \frac{3}{6} = \frac{1}{2}$		$\sin A = \frac{6}{12} = \frac{1}{2}$		$sinA = \frac{1}{2}$
	∠A=30°、150°		∠A=30°、150°		∠A=30°、150°		∠A=30°、150°
8	$a=8\sqrt{2}$, R=8	9	$a=4\sqrt{2}$, R=4	10	$a = \sqrt{2}$, R=1	11)	$a=9\sqrt{2}$, R=9
	$\sin A = \frac{8\sqrt{2}}{16} = \frac{1}{\sqrt{2}}$		$\sin A = \frac{4\sqrt{2}}{8} = \frac{1}{\sqrt{2}}$		$\sin A = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$		$\sin A = \frac{9\sqrt{2}}{18} = \frac{1}{\sqrt{2}}$
	∠A=45°、135°		∠A=45°, 135°		∠A=45°、135°		∠A=45°、135°

正弦定理はどの辺にも当てはまるので、 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ が成り立ちます。

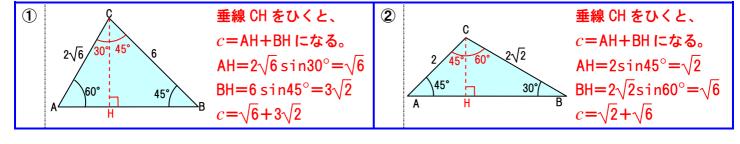
\triangle ABC について、 \angle B の対辺 b の長さを求めましょう。(8 点×5 問=40 点)

	TO IC 20°C, ZD ONIE O ORC ENOROR 3	, ,	
例	\angle A=30 $^{\circ}$ 、 \angle B=45 $^{\circ}$ 、 a =5 のときの b の長さ	1	\angle A $=30^{\circ}$ 、 \angle B $=135^{\circ}$ 、 a $=3 のときのb の長さ$
	$\frac{5}{\sin 30^{\circ}} = \frac{b}{\sin 45^{\circ}} \rightarrow 5\sin 45^{\circ} = b\sin 30^{\circ}$		$\frac{3}{\sin 30^{\circ}} = \frac{b}{\sin 135^{\circ}} \rightarrow 3\sin 135^{\circ} = b\sin 30^{\circ}$
	$5 \times \frac{1}{\sqrt{2}} = \frac{1}{2}b \qquad b = 5\sqrt{2}$		$3 \times \frac{1}{\sqrt{2}} = \frac{1}{2}b \qquad b = 3\sqrt{2}$
2	\angle A=45 $^{\circ}$ 、 \angle B=30 $^{\circ}$ 、 a =7 のときの b の長さ	3	\angle A=45 $^{\circ}$ 、 \angle B=120 $^{\circ}$ 、 a =4 のときの b の長さ
	$\frac{7}{\sin 45^{\circ}} = \frac{b}{\sin 30^{\circ}} \rightarrow 7\sin 30^{\circ} = b\sin 45^{\circ}$		$\frac{4}{\sin 45^{\circ}} = \frac{b}{\sin 120^{\circ}} \rightarrow 4\sin 120^{\circ} = b\sin 45^{\circ}$
	_		_

$$7 \times \frac{1}{2} = \frac{1}{\sqrt{2}}b$$
 $b = \frac{7\sqrt{2}}{2}$ $4 \times \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{2}}b$ $b = 2\sqrt{6}$

④ $\angle A = 60^{\circ}$ 、 $\angle B = 30^{\circ}$ 、 $a = 2$ のときの b の長さ $\frac{2}{\sin 60^{\circ}} = \frac{b}{\sin 30^{\circ}} \rightarrow 2\sin 30^{\circ} = b\sin 60^{\circ}$ $\frac{6}{\sin 60^{\circ}} = \frac{b}{\sin 45^{\circ}} \rightarrow 6\sin 45^{\circ} = b\sin 60^{\circ}$ $2 \times \frac{1}{2} = \frac{\sqrt{3}}{2}b$ $b = \frac{2}{\sqrt{3}}$ $6 \times \frac{1}{\sqrt{2}} = \frac{\sqrt{3}}{2}b$ $b = 2\sqrt{6}$

\triangle ABC について、 \angle C の対辺 c の長さを求めましょう。(8 点×2 問=16 点)



59 正弦定理・余弦定理3

制限時間 30 分 開始時間 ■時<u>■分</u>

 $c = \sqrt{112} = 4\sqrt{7}$

終了時間 ■時■分 合格点 80 点

余弦定理… $a^2=b^2+c^2-2bc\cos A$ 、 $b^2=c^2+a^2-2ca\cos B$ 、 $c^2=a^2+b^2-2ab\cos C$

$$\cos 30^{\circ} = \frac{\sqrt{3}}{2} \quad \cos 45^{\circ} = \frac{1}{\sqrt{2}} \quad \cos 60^{\circ} = \frac{1}{2} \quad \cos 120^{\circ} = -\frac{1}{2} \quad \cos 135^{\circ} = -\frac{1}{\sqrt{2}} \quad \cos 150^{\circ} = -\frac{\sqrt{3}}{2}$$

\triangle ABC について、次の辺の長さを求めましょう。(10 点 \times 5 問=50 点)

例	\angle A=45 $^{\circ}$ 、 b =5 $\sqrt{2}$ 、 c =8 のときの a	1	\angle A=120 $^{\circ}$ 、 b =3、 c =5 のときの a
	$a^2 = (5\sqrt{2})^2 + 8^2 - 2 \times 5\sqrt{2} \times 8 \times \cos 45^\circ$		$a^2 = 3^2 + 5^2 - 2 \times 3 \times 5 \times \cos 120^\circ$
	$a^2 = 50 + 64 - 80\sqrt{2} \times \frac{1}{\sqrt{2}} = 114 - 80 = 34$		$a^2 = 9 + 25 - 30 \times (-\frac{1}{2}) = 34 + 15 = 49$
	$a=\sqrt{34}$		$a = \sqrt{49} = 7$
2	\angle B $=30^\circ$ 、 $a=2\sqrt{3}$ 、 $c=6$ のときの b	3	\angle B=135 $^{\circ}$ 、 a =4、 c =3 $\sqrt{2}$ のときの b
	$b^2 = 6^2 + (2\sqrt{3})^2 - 2 \times 6 \times 2\sqrt{3} \times \cos 30^\circ$		$b^2 = (3\sqrt{2})^2 + 4^2 - 2 \times 3\sqrt{2} \times 4 \times \cos 135^\circ$
	$b^2 = 36 + 12 - 24\sqrt{3} \times \frac{\sqrt{3}}{2} = 48 - 36 = 12$		$b^2 = 18 + 16 - 24\sqrt{2} \times (-\frac{1}{\sqrt{2}}) = 34 + 24 = 58$
	$b = \sqrt{12} = 2\sqrt{3}$		$b=\sqrt{58}$
4	\angle C=60 $^{\circ}$ 、 a =3、 b =5 のときの c	⑤	$oldsymbol{\angle}$ C=150 $^{\circ}$ 、 a =4 $\sqrt{3}$ 、 b =4 のときの c
	$c^2 = 3^2 + 5^2 - 2 \times 3 \times 5 \times \cos 60^\circ$		$c^2 = (4\sqrt{3})^2 + 4^2 - 2 \times 4\sqrt{3} \times 4 \times \cos 150^\circ$
	$c^2 = 9 + 25 - 30 \times \frac{1}{2} = 34 - 15 = 19$		$c^2 = 48 + 16 - 32\sqrt{3} \times (-\frac{\sqrt{3}}{2}) = 64 + 48 = 112$

余弦定理を変形すると、次の関係式が成り立ちます。

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
, $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$, $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

\triangle ABC について、次の角の大きさを求めましょう。(10 点 \times 5 問=50 点)

例	$a=\sqrt{34}$ 、 $b=5\sqrt{2}$ 、 $c=8$ のときの∠A $\cos A = \frac{50+64-34}{2\times5\sqrt{2}\times8} = \frac{80}{80\sqrt{2}} = \frac{1}{\sqrt{2}}$ よって∠A=45°	1	$a=\sqrt{5}$ 、 $b=\sqrt{2}$ 、 $c=1$ のときの $\angle A$ $\cos A = \frac{2+1-5}{2\times\sqrt{2}\times1} = \frac{-2}{2\sqrt{2}} = -\frac{1}{\sqrt{2}}$ よって $\angle A = 135^\circ$
2	$a=5$ 、 $b=7$ 、 $c=8$ のときの $\angle B$ $\cos B = \frac{64+25-49}{2\times8\times5} = \frac{40}{80} = \frac{1}{2}$ よって $\angle B = 60^\circ$	3	$a=10$ 、 $b=14$ 、 $c=6$ のときの $\angle B$ $\cos B = \frac{36+100-196}{2\times6\times10} = \frac{-60}{120} = -\frac{1}{2}$ よって $\angle B = 120^\circ$
4	$a=4$ 、 $b=5\sqrt{3}$ 、 $c=\sqrt{31}$ のときの \angle C \cos C = $\frac{16+75-31}{2\times4\times5\sqrt{3}} = \frac{60}{40\sqrt{3}} = \frac{\sqrt{3}}{2}$ よって \angle C=30°	5	$a=4\sqrt{3}$ 、 $b=4$ 、 $c=4\sqrt{7}$ のときの $\angle C$ $\cos C = \frac{48+16-112}{2\times4\sqrt{3}\times4} = \frac{-48}{32\sqrt{3}} = -\frac{\sqrt{3}}{2}$ よって $\angle C = 150^\circ$

60 正弦定理 • 余弦定理4)

制限時間 30分

開始時間 時一分

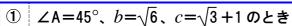
終了時間 時一分 80点

正弦定理と余弦定理を利用すると、2辺とその間の角から、残りの辺や角を求めることが出来ます。

正弦定理···a=2RsinA

余弦定理… $a^2=b^2+c^2-2bc\cos A$ 、 $b^2=c^2+a^2-2ca\cos B$ 、 $c^2=a^2+b^2-2ab\cos C$

 \triangle ABC について、残りの辺の長さや角の大きさを求めましょう。(20 点imes3 問imes60 点)

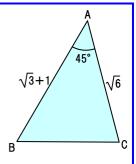


$$a^2 = \sqrt{6}^2 + (\sqrt{3} + 1)^2 - 2 \times \sqrt{6} \times (\sqrt{3} + 1) \times \cos 45^\circ$$

$$a^2 = 6 + 4 + 2\sqrt{3} - (2\sqrt{18} + 2\sqrt{6}) \times \frac{1}{\sqrt{2}} = 10 + 2\sqrt{3} - 6 - 2\sqrt{3} = 4$$
 \$\(\sigma \) $a = \sqrt{4} = 2$ \$\(\sigma \frac{3}{3} + \frac{1}{3} \)

$$\cos B = \frac{4 + 2\sqrt{3} + 4 - 6}{2 \times (\sqrt{3} + 1) \times 2} = \frac{2\sqrt{3} + 2}{4\sqrt{3} + 4} = \frac{2(\sqrt{3} + 1)}{4(\sqrt{3} + 1)} = \frac{1}{2} \text{ } \text{\sharp a} = 60^{\circ}$$

 $\angle C = 180^{\circ} - 45^{\circ} - 60^{\circ} = 75^{\circ}$



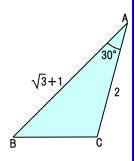
② $\angle A=30^{\circ}, b=2, c=\sqrt{3}+1$ のとき

$$a^2 = 2^2 + (\sqrt{3} + 1)^2 - 2 \times 2 \times (\sqrt{3} + 1) \times \cos 30^\circ$$

$$a^2 = 4 + 4 + 2\sqrt{3} - (4\sqrt{3} + 4) \times \frac{\sqrt{3}}{2} = 8 + 2\sqrt{3} - 6 - 2\sqrt{3} = 2$$
 よって $a = \sqrt{2}$

$$\cos B = \frac{4 + 2\sqrt{3} + 2 - 4}{2 \times (\sqrt{3} + 1) \times \sqrt{2}} = \frac{2\sqrt{3} + 2}{2\sqrt{6} + 2\sqrt{2}} = \frac{2(\sqrt{3} + 1)}{2\sqrt{2}(\sqrt{3} + 1)} = \frac{1}{\sqrt{2}} \quad \text{\sharp oc} \ \angle B = 45^{\circ}$$

 $\angle C = 180^{\circ} - 30^{\circ} - 45^{\circ} = 105^{\circ}$



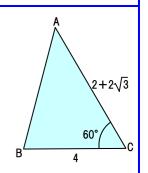
③ $\angle C=60^{\circ}$ 、a=4、 $b=2+2\sqrt{3}$ のとき

$$c^2 = 4^2 + (2 + 2\sqrt{3})^2 - 2 \times 4 \times (2 + 2\sqrt{3}) \times \cos 60^\circ$$

$$c^2 = 16 + 16 + 8\sqrt{3} - (16 + 16\sqrt{3}) \times \frac{1}{2} = 32 + 8\sqrt{3} - 8 - 8\sqrt{3} = 24$$
 \$\tau c = \sqrt{24} = 2\sqrt{6}\$

$$\cos A = \frac{16 + 8\sqrt{3} + 24 - 16}{2 \times (2 + 2\sqrt{3}) \times 2\sqrt{6}} = \frac{8\sqrt{3} + 24}{8\sqrt{6} + 8\sqrt{18}} = \frac{8(\sqrt{3} + 3)}{8\sqrt{2}(\sqrt{3} + 3)} = \frac{1}{\sqrt{2}} \quad \text{\sharp \supset $\tau \angle A = 45$}$$

 $\angle B = 180^{\circ} - 60^{\circ} - 45^{\circ} = 75^{\circ}$



円に内接する四角形 ABCD について、BD と半径 R の長さを求めましょう。(20 点×2 問=40 点)

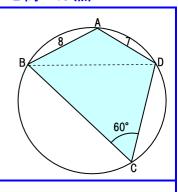
① ∠C=60°、AB=8、AD=7のとき

$$\angle A = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

 $\triangle ABD$ で余弦定理より、 $BD^2=8^2+7^2-2\times8\times7\times\cos120^\circ$

BD²=64+49-112×(
$$-\frac{1}{2}$$
)=113+56=169 よって BD= $\sqrt{169}$ =13

$$2R = \frac{13}{\sin 120^{\circ}} = 13 \div \frac{\sqrt{3}}{2} = \frac{26}{\sqrt{3}} \text{ dor } R = \frac{13}{\sqrt{3}}$$



② ∠C=120°、AB=3、AD=8 のとき

$$\angle A = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

 $\triangle ABD$ で余弦定理より、 $BD^2=3^2+8^2-2\times3\times8\times\cos60^\circ$

BD²=9+64-48×
$$\frac{1}{2}$$
=73-24=49 よって BD= $\sqrt{49}$ =7

$$2R = \frac{7}{\sin 60^{\circ}} = 7 \div \frac{\sqrt{3}}{2} = \frac{14}{\sqrt{3}} \text{ kor } R = \frac{7}{\sqrt{3}}$$

